N85-32404

PREDICTING PHOTOTHERMAL FIELD PERFORMANCE

17.4 11 X 24 14

JET PROPULSION LABORATORY

C.C. Gonzalez R.G. Ross, Jr.

Objective and Approach

- Extrapolate photothermal accelerated test data to simulate 30-year field exposure
 - Develop an analytical model incorporating the measured dependency between transmittance loss and UV and temperature exposure levels
 - Exercise the model using SOLMET weather data extrapolated to 30 years for various sites and modulemounting configurations

Analytical Model Assumptions and Characteristics

- Encapsulant optical transmittance can be expressed as a function of the concentration of a given reactive species, Q
- Rate of variation of concentration, Q/t, is a reaction rate.
- Standard reaction-rate equations, Arrhenius and power-law relationships are used to relate Q/t to the stress levels
- Two competing reactions occur simultaneously, one causing the increase of yellowing and one bleaching out the yellowing
 - Principle of superposition is assumed; order in which environmental levels occur not important
- Arbitrary constants a₁ to a₁₀ determined by least-squares fitting of experimental optical transmittance (as a function of temperature and UV) versus time data

PRECEDING PAGE BLANK NOT FILMED

RELIABILITY PHYSICS

11

N. B. X. M. K. K. Y.

1

1 10

7 67 , 7 P

Ana' lical Model

• Two equations developed:

$$\tau/\tau_{G} = 1 + a_{1}Q + a_{2}Q^{2} + a_{3}Q^{3}$$

 $G_{1}^{*} = e^{(a_{4}/T)} + a_{2}e^{(a_{6}/T)}S^{a_{7}} - a_{2}e^{(a_{9}T)}S^{a_{10}}$

Where:

- τ = transmittance at 440 nm
- $\tau_0 =$ initial transmittance at 440 nm
- Q = concentration
- a_i = constant
- t = time
- T = temperature in °K
- S = UV level in suns

+

.....

Transmittance Loss vs Concentration, Q (EVA)

Les and the start was the

and the second of the second o

ĸ.

Hard and the second and and and

RELIABILITY PHYSICS

Arrhenius Plot of Reaction Rate (Q/Time) vs Temperature (EVA)

Derivation of Photovoltaic Degradation From 440-m Transmittance Loss

- 440-nm transmittance loss defines unique spectral transmittance curve for encapsulant
- Photovoltaic response requires convolution of encapsulant transmittance curve, cell spectral response curve, and solar distribution curve (global spectrum)
- Two-cell spectral response models used, one for crystalline silicon and one for amorphous silicon cells

- 、

30-Year Transmittance, %, vs Wavelength for EVA

125

RELIABILITY PHYSICS

j.

Determining 30-Year Degradation Using Photothermal Degradation Simulation Model

- Calculate 30-year field exposure environment using hourly SOLMET weather data tapes
 - Encapsulant operating temperatures computed as a function of irradiance level on tilted surface and ambient air temperature
 - UV level computed as a fixed 5% of the solar irradiance level
 - Results presented as matrix of annual number of exposure hours at each combination of temperature and UV level
- Simulate 30-year photothermal degradation using simulation model and environmental stress matrix
 - Matrix of reaction rates, Q/t, determined for temperature and UV levels in exposure-hours matrix
 - The product is taken of the two matrices
 - The sum of the values in each element of the last matrix yields the concentration Q at the end of a year
 - 30-year concentration is 30 times annual value

- ~

Name and a state of the state o

Call	Annual hours of exposure											
temper-	II Ier. UV level in suns											
°C	0.05	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95	1.05	1.15
75	0	0	0	0	0	0	0	0	0	11	4	0
65	0	0	0	0	0	1	17	24	107	294	167	6
55	0	0	0	32	18	56	130	81	201	142	177	17
45	22	74	32	110	62	84	144	73	172	154	55	1
35	134	131	63	124	97	93	113	49	53	17	0	0
25	190	129	92	86	53	21	22	0	0	0	0	0
15	129	94	36	35	8	0	0	0	0	ຸ	0	0
5	55	20	3	0	0	0	0	0	0	0	0	0

Annual Hours of Exposure of a Ground-Mounted Array to Various Cell Temperatures and UV Levels (Phoenix)

Relative Values of Reaction Rates (Q/Time) for Various Cell Temperatures and UV Levels

Call	Relative values of reaction rates, Q/time												
temper-					UV lev	UV level in suns							
°C	0.05	0.15	0.25	0.35	0.45	0.55	0.65	0.75	0.85	0.95	1.05	1.15	
75	65	61	58	55	52	49	46	44	41	39	37	35	
65	33	31	29	28	26	25	24	23	21	20	19	18	
55	16	15	14	13	13	12	12	11	11	10	10	9	
45	7	7	7	6	6	6	6	5	5	5	5	4	
35	3	3	3	3	3	3	2	2	2	2	2	2	
25	1	1	1	1	1	1	1	1	1	0.9	0.9	0.9	
15	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	
5	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	

RELIABILITY PHYSICS

at all the atta the

Photovoltaic Power Loss After 30 Years in Phoenix* (EVA)

Cell type	Ground-mounted array	Roof-mounted array		
Crystalline cell	3.5%	7.9%		
Amorphous cell* *	8.1%	17.8%		

30-year allocation for this degradation mode is 6%

- *Based on assumed UV acceleration factor distribution near one sun
- **Only when EVA is between module front surface and cells

Conclusions

- Temperature is key driver to photothermally induced transmittance loss (approximate doubling of rate per 10°C)
- Sensitivity of transmittance loss to UV level is highly nonlinear with minimum in curve near one sun
- EVA results consistent with 30-year life allocation

Future Work

- Refine analytical model using additional data taken in region of one sun
- Repeat the thermal-UV exposure tests with the addition of humidity to study the impact of this variable
- Investigate the use of techniques similar to those discussed here for determining the photothermal degradation of encapsulant mechanical properties over 30-year life

